

Development of Smart-Phone Interfaces for Tongue Controlled Assistive Devices

September 10th, 2020

Silvia Maddalena Rossi

Nicholas Marjanovic

Dr. Hananeh Esmailbeigi

Introduction Background Hypothesis Implementation Evaluation Results Conclusion Paralysis

13.3% of the world population experiences **disability** ^[1]

1.7% of the USA population experiences **paralysis**^{[2]; [3]}

Spinal Cord Injury

Partial or total **loss** of sensation and **control** of lower and **upper limbs**

Assistance from family members or caretakers; this hinders independence and privacy

Exclusion from interacting with smartphones and computers

[4]

[5]

Evaluation

Conclusion

Results

Intraoral Assistive Devices

Background

Results

WTSE Laboratory Solution

Background

TT-UIC

Oral User Interface Controller Tongue Trackpad User Interface Controller **O-UIC** [9]

Wearable Technology & Sensory Enhancement

Laboratory

Evaluation

WTSE Laboratory Solution

Background

Discreet design that completely fits in the oral cavity

Bluetooth Low Energy communication with phones and computers

Capacitive Sensing to detect tongue touches against the palate

Results

<u>Goals</u>

Allow the **O-UIC** device to interact with an application that **decodes** the communicated information

Simplify the interaction for the cursor based TT-UIC

Create a **Tongue Training** environment for the necessary **movements**

React Native

User Needs Assessment

Developed Functionalities – O-UIC

UC

DEPARTMENT OF BIOENGINEERING

Developed Functionalities – TT-UIC

UIC

DEPARTMENT

OF BIOENGINEERING

Results

Introduction Background Hypothesis Implementation Evaluation Results Conclusion

Tongue Trackpad – Fitts Law

Theoretical analysis of **pointing actions**

$$MT = a + b \log_2 \left(\frac{A}{W} + c\right)_{\text{\tiny [11]}}$$

Difficulty Index: ratio between target distance (A) and width (W)

MT = movement time a,b,c = constants A = distance W=width

	Default Keyboard	Custom Keyboard
Width (dpi)	35.14	60
Difficulty index (1/dpi)	0.028	0.016

Theoretical Evaluation

Keystroke Level Model (KLM) analysis of the developed screens

Breakdown of core tasks in **finite elements** to identify the theoretical **time** of execution

Action	Operator	Duration [s]
Key or button press	К	0.20
Pointing	Р	1.10
Drawing	D	varies
Mental preparation	М	1.35
Homing	Н	0.4
Representation of the response	R	depends on system

KLM Analysis - Results

	911 Call	Phone Call	Email
Estimated time using O-UIC [s]	2.65	22.85	30.2
Estimated time using Tongue Trackpad [s]	2.65	29.15	34.45

O-UIC Evaluation - Results

		Inexperienced Users	Experienced Users
O-UIC [pangram testing]	Characters per minute [CPM]	16.72	32.67

		SOS Call	Phone Call	Email
<u>O-UIC</u>	Time needed [s]	2	36	53
[with custom application]	Errors made	0	4	5

TT-UIC Testing - Results

		SOS Call	Phone Call	Email	SMS
Tongue Trackpad [with custom application]	Time needed [s]	2.53 ± 0.35	50.25 ± 1.48	68.75 ± 2.86	71 ± 4.74
	Errors made	0	0.75 ± 0.43	0	1 ± 1
Tongue Trackpad [with default environment]	Time needed [s]	21.9 ± 2.57	65.18 ± 13	76.75 ± 5.8	109.5 ± 20.2
	Errors made	0	1.25 ± 0.8	2.25 ± 0.43	2 ± 0.7

39.6% decrease in time

Results

Feedback Survey- Results

	I think that I would be able to use this system independently after it is placed inside the oral cavity.	I think this system would assist me in my interaction with my smartphone and computer.	Overall interest in the wearable device and the associated application.
o-uic 👰	4.6 ± 0.49	3.4 ± 1.02	2.8± 0.97
TT-UIC 🞒	4.4 ± 0.8	3.2 ± 1.32	3.2 ± 1.32

Future Developments

Extensive **user testing** to evaluate the effective time needed for the different tasks

Implementation of further **functionalities** to expand the possibilities

Inclusion of the target population in both the testing and the identification of additional functionalities

Conclusions

Two interfaces developed for easy user interaction with intraoral assistive devices

Preliminary testing and feedback survey demonstrated the functioning of the application and the interest of the target population

The interfaces and devices are a possible option for paralysed users to easily interact with technology

References

- [1] World Health Organization, "Summary World Report On Disability," *World Health*, pp. 1–24, 2011.
- [2] B. S. Armour, E. A. Courtney-Long, M. H. Fox, H. Fredine, and A. Cahill, "Prevalence and causes of paralysis United States, 2013," *Am. J. Public Health*, vol. 106, no. 10, pp. 1855–1857, 2016.
- [3] "Paralysis in the USA." [Online]. Available: https://www.christopherreeve.org/living-with-paralysis/stats-about-paralysis. [Accessed: 23-Apr-2020].
- [4] "BCI." [Online]. Available: https://www.unicorn-bi.com/product/unicorn-hybrid-black/. [Accessed: 05-May-2020].
- [5] "Eye Tracking." [Online]. Available: https://www.sr-research.com/about-eye-tracking/. [Accessed: 05-May-2020].
- [6] Kim J. et al.: "The tongue enables computer and wheelchair control for people with spinal cord injury". Sci. Transl. Med., vol. 5, no. 213, 2013
- [7] Kong F., Sahadat M. N., Ghovanloo M., and Durgin G. D.: "A Stand-Alone Intraoral Tongue-Controlled Computer Interface for People with Tetraplegia", IEEE Trans. Bio-med. Circuits Syst., vol. 13, no. 5, pp. 848–857, 2019.
- [8] H. A. Caltenco, B. Breidegard, and L. N. S. Andreasen Struijk, "On the tip of the tongue: Learning typing and pointing with an intra-oral computer interface," Disabil. Rehabil. Assist. Technol., vol. 9, no. 4, pp. 307–317, 2014.
- [9] M. Tomback, "The Oral User Interface Controller (O-UIC): An Assistive Communication Device" 2019.
- [10] "Tongue Trackpad: an augmentative and assistive device aimed at enhancing digital life", Davide Bondavalli 2020 and "Distribution Analysis of the Tongue's Free-Exploration Pattern using an Oral Wearable Device", Giulia Soresini, 2020
- [11] S. MacKenzie, "Fitt's Law," Human-Computer Interaction, vol. 7. pp. 91–139, 1992.
- [12] B. E. John and D. E. Kieras, "The GOMS family of user interface analysis techniques: comparison and contrast," ACM Trans. Comput. Interact., vol. 3, no. 4, pp. 320–351, 1996.

Thank you for your attention

